楼主: 论文库
649 0

多维数据特征融合的用户情绪识别 [推广有奖]

  • 0关注
  • 13粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
0
论坛币
5 个
通用积分
0.0363
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38440 点
帖子
3839
精华
0
在线时间
836 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
论文库 在职认证  发表于 2017-12-29 09:00:02 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:针对目前基于智能手机的情绪识别研究中所用数据较为单一,不能全面反应用户行为模式,进而不能真实反应用户情绪这一问题展开研究,基于智能手机从多个维度全面收集反应用户日常行为的细粒度感知数据,采用多维数据特征融合方法,利用支持向量机(support vector machine,SVM)、随机森林(random forest)等6种分类方法,基于离散情绪模型和环状情绪模型两种情绪分类模型,对12名志愿者的混合数据和个人数据分别进行情绪识别,并进行了对比实验。实验结果表明,该全面反应用户行为的多维数据特征融合方法能够很好地对用户的情绪进行识别,其中使用个人数据进行情绪识别的准确率最高可达到79.78%,而且环状情感模型分类结果明显优于离散分类模型。

原文链接:http://www.cqvip.com//QK/93336B/201606/669184548.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:数据特征 Support machine Forest Vector 情绪识别 情绪模型 机器学习 智能手机

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-2 18:20