楼主: DL-er
649 0

基于表示学习的中文分词 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.0435
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38540 点
帖子
3853
精华
0
在线时间
813 小时
注册时间
2017-9-5
最后登录
2018-6-30

楼主
DL-er 在职认证  发表于 2017-12-29 19:00:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:为提高中文分词的准确率和未登录词(OOV)识别率,提出了一种基于字表示学习方法的中文分词系统。首先使用Skip-gram模型将文本中的词映射为高维向量空间中的向量;其次用K-means聚类算法将词向量聚类,并将聚类结果作为条件随机场(CRF)模型的特征进行训练;最后基于该语言模型进行分词和未登录词识别。对词向量的维数、聚类数及不同聚类算法对分词的影响进行了分析。基于第四届自然语言处理与中文计算会议(NLPCC2015)提供的微博评测语料进行测试,实验结果表明,在未利用外部知识的条件下,分词的F值和OOV识别率分别达到95.67%和94.78%,证明了将字的聚类特征加入到条件随机场模型中能有效提高中文短文本的分词性能。

原文链接:http://www.cqvip.com//QK/94832X/201610/670247661.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:中文分词 学习的 k-means聚类 k-means cqvip 表示学习 词向量 聚类 条件随机场 中文分词

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-3 14:04