楼主: DL-er
527 0

Augmented Bayes分类器的一种学习方法 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.0435
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38540 点
帖子
3853
精华
0
在线时间
813 小时
注册时间
2017-9-5
最后登录
2018-6-30

楼主
DL-er 在职认证  发表于 2017-12-30 13:20:02 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:NaYve Bayes分类器作为一种计算简单、精度较高的分类方法,已经得到了广泛应用。但是其所作的假设:各属性之间相互独立却非常容易的现实中被违背,阻碍了分类器精度的进一步提高。而Bayes网络较好地考虑了属性之间的依赖关系,但是其计算相当复杂。Augmented Bayes分类器将两者的优点结合在一起,既考虑了属性之间的依赖关系,又保证了算法的简单性。该文从属性所拥有的信息量出发考虑,提出了Augmented Bayes分类器的一种基于熵的学习方法。最后,通过测试数据将该方法与Nayve Bayes分类器和SuperParent算法进行了比较。

原文链接:http://www.cqvip.com//QK/91690X/200217/6769032.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:augmented Bayes mente 学习方法 baye Augmented Bayes分类器 学习方法 熵分析 机器学习

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-25 16:24