楼主: 人工智能-AI
610 0

用稀疏贝叶斯概率模型做文本分类 [推广有奖]

  • 0关注
  • 10粉丝

会员

学术权威

71%

还不是VIP/贵宾

-

威望
0
论坛币
25 个
通用积分
0.0584
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
37770 点
帖子
3776
精华
0
在线时间
853 小时
注册时间
2017-9-5
最后登录
2018-4-11

楼主
人工智能-AI 在职认证  发表于 2018-1-1 18:00:02 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:如今,当处理大量数据集的协变量时,相比小样本量的一个常见问题是:估计与每个协变量相关联的参数。当协变量的数量远远超过样本的数量,参数估计变得非常困难。在这项研究中,我们开发了一个稀疏的Probit贝叶斯模型(SPBM)的基础上吉布斯抽样,其利用双指数函数之前诱导收缩,并减少在模型协变量的数目。使用6个领域,如数学,在维基百科已下载的方法中进行评估。我们通过计算并根据执行训练和测试组的分类的阈值作为决策规则。利用遍布全球50个运行平均灵敏度和特异性我们的模型的表现相比,支持向量机(SVM)。该SPBM实现了高分类精度和几乎所有的分析领域优于SVM。

原文链接:http://www.cqvip.com//QK/70356A/201519/665260954.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:贝叶斯概率 贝叶斯 Probit cqvip 支持向量机 稀疏贝叶斯 参数估计 广义线性模型 机器学习 文本分类

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-29 02:29