楼主: a智多星
607 0

基于SVM+Sigmoid的汉语组块识别 [推广有奖]

  • 0关注
  • 14粉丝

会员

学术权威

72%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.1414
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38160 点
帖子
3814
精华
0
在线时间
830 小时
注册时间
2017-9-5
最后登录
2018-4-11

楼主
a智多星 在职认证  发表于 2018-1-3 09:20:01 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:本文提出用SVM+Sigmoid来进行汉语组块识别的方法.SVMs具有不需要进行认真选取特征的优点,并且在具有高维特征空间的输入数据上也能够具有高的泛化性能,通过核函数的原则,SVMs能够在独立于训练数据维数的小计算范围内进行训练.Sigmoid函数使用一个参数模型来直接拟合后验概率,从而将SVMs的输出映射成一个后验概率,使一个分类器在做全局决策的一个局部决策时,考虑到全面分类,从而决策更具有合理性.实验结果表明该方法较单纯的SVMs方法具有好的效果.

原文链接:http://www.cqvip.com//QK/92817X/200408/10708617.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:GMO SVM cqvip 后验概率 训练数据 SVM SIGMOID函数 汉语组块 组块识别 支持向量机

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-1 00:33