楼主: 论文库
703 0

基于BP神经网络的饱和砂土液化判别方法 [推广有奖]

  • 0关注
  • 13粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
0
论坛币
5 个
通用积分
0.0363
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38440 点
帖子
3839
精华
0
在线时间
836 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
论文库 在职认证  发表于 2018-1-4 10:00:02 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:基于唐山地震中大量的砂土液化现场实测资料,选取描述地震动特性的烈度、震中距、地面峰值加速度和描述砂土层埋藏环境条件的地下水位、标贯点深度(土层深度)、上覆非液化覆盖土层厚度、有效覆盖压力,以及表示砂土自身属性的标准贯入锤击数、平均粒径、不均匀系数、修正标贯击数共11个指标的不同组合作为输入变量,采用快速BP算法和LM算法构造了饱和砂土液化判别的BP神经网络预测模型.通过所建网络模型的训练、验证和应用,结果表明:(1)所建14个BP神经网络模型都是有效的,液化判别的准确度与模型输入变量的不同组合有关;(2)增加网络模型的节点(考虑因素较多)并不一定能够提高BP神经网络模型的液化判别准确度,反而增加了BP神经网络模型的复杂性和学习时间;(3)两种算法的BP神经网络模型都有很高的液化判别准确度,LM算法的计算速率要比快速BP算法快得多,但在计算过程中需要更多的内存,建议采用LM算法;(4)采用所提BP神经网络模型的权值与阈值进行其它预测样本的液化判别时,判别结果可能偏于保守;(5)从影响砂土液化的主要因素、获取指标难易程度考虑,在与砂土液化判别公式考虑指标一致的情况下,建议采用BP神经网络模型M4或M5a,该模型简单、方便,且其预测准确度远高于的砂土液化判别准确度.

原文链接:http://www.cqvip.com//QK/97398X/200502/15549935.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:BP神经网络 神经网络 神经网 BP神经网络模型 神经网络模型 砂土液化 BP神经网络 LM算法 快速BP算法 液化势

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-1-24 22:05