楼主: DL-er
496 0

异或逻辑GPU算法的性能分析与优化 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.0435
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38540 点
帖子
3853
精华
0
在线时间
813 小时
注册时间
2017-9-5
最后登录
2018-6-30

楼主
DL-er 在职认证  发表于 2018-1-5 10:00:02 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:对机器学习领域内非线性机器学习中的异或逻辑问题进行了深入探讨和分析,并阐述了该算法相应的并行实现方法.之后,通过在主流的Nvidia GPU Kepler架构上进行实际测试以及性能分析工具的使用,确定了该类机器学习算法的主要性能瓶颈.在此基础上,对该算法的最主要的性能瓶颈仿函数进行了优化.从数学理论上推导出了仿函数等价的变换公式并给出了新的计算模式.运用新的计算方法可以大幅度的减少关键路径上的计算量,最终得到了3.5倍的性能提高.

原文链接:http://www.cqvip.com//QK/92082X/201403/49202718.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:性能分析 GPU 机器学习算法 kepler nvidia 机器学习 Nelder-Mead方法 异或逻辑 GPU并行计算

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-7 11:59