楼主: 论文库
904 0

基于不平衡数据集的客户流失预测研究 [推广有奖]

  • 0关注
  • 13粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
0
论坛币
5 个
通用积分
0.0363
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38440 点
帖子
3839
精华
0
在线时间
836 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
论文库 在职认证  发表于 2018-1-6 13:20:01 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:目前客户流失预测面临的主要问题之一就是类不平衡性(class imbalance)。针对这个问题,首先应用欠抽样法(undersampling)处理客户流失数据降低不平衡性,再应用C4.5D、C4.5N、RIPPER、NaiveBayes和Ran-domForest机器学习方法对客户流失进行预测。实验结果表明,欠抽样法是在牺牲负类样本预测精度的前提下,提高正类预测精度,于是采用重复抽样法(resampling)来弥补欠抽样法的缺陷,减少负类样本中含有大量有用信息的丢失,实验结果证明了这种方法的正确性和有效性。

原文链接:http://www.cqvip.com//QK/93231X/201012/36264196.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:客户流失 数据集 不平衡 Resampling Imbalance 类不平衡性 客户流失预测 机器学习 抽样法

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-31 16:37