楼主: 人工智能-AI
528 0

Hadoop Performance Prediction Model Based on Random Forest [推广有奖]

  • 0关注
  • 10粉丝

会员

学术权威

71%

还不是VIP/贵宾

-

威望
0
论坛币
25 个
通用积分
0.0584
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
37770 点
帖子
3776
精华
0
在线时间
853 小时
注册时间
2017-9-5
最后登录
2018-4-11

楼主
人工智能-AI 在职认证  发表于 2018-1-6 18:20:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:Map Reduce is a programming model for processing large data sets,and Hadoop is the most popular open-source implementation of MapReduce.To achieve high performance,up to 190 Hadoop configuration parameters must be manually tunned.This is not only time-consuming but also error-pron.In this paper,we propose a new performance model based on random forest,a recently developed machine-learning algorithm.The model,called RFMS,is used to predict the performance of a Hadoop system according to the system’s configuration parameters.RFMS is created from 2000 distinct fine-grained performance observations with different Hadoop configurations.We test RFMS against the measured performance of representative workloads from the Hadoop Micro-benchmark suite.The results show that the prediction accuracy of RFMS achieves 95% on average and up to 99%.This new,highly accurate prediction model can be used to automatically optimize the performance of Hadoop systems.

原文链接:http://www.cqvip.com//QK/70429X/201302/46536953.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:performance Prediction Performan Perform predict 性能预测 模型基 森林 随机 配置参数

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-2 06:48