楼主: a智多星
557 0

一种分层多算法集成的微博情感分类方法 [推广有奖]

  • 0关注
  • 14粉丝

会员

学术权威

72%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.1414
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38160 点
帖子
3814
精华
0
在线时间
830 小时
注册时间
2017-9-5
最后登录
2018-4-11

楼主
a智多星 在职认证  发表于 2018-1-6 20:20:01 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:目前主观信息情感分类常用的方法主要有基于知识工程和基于统计两类,其中基于统计的机器学习方法在效率上优于基于知识的方法,但单一的机器学习算法有各自的优缺点,难以胜任复杂的分类任务。本文将微博情感判别任务分层,在不同层次选择合适的机器学习算法,提出了一种多算法集成的微博细粒度情感分类方法。首先采用朴素贝叶斯(NB)分类器对微博进行有无情绪分类,然后采用AdaBoost集成算法对KNN进行集成训练出多个分类器,对有情绪微博基于训练出的多个分类器通过线性组合模型进行情感判别。实验结果表明,在文本分类任务中合理集成不同机器学习算法,较单一机器学习算法和基于情感词典的方法能够提高分类性能。

原文链接:http://www.cqvip.com//QK/94357X/201417/662567715.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:adaboost 机器学习算法 boost cqvip 朴素贝叶斯 微博情感判别 算法集成 机器学习算法 朴素贝叶斯 AdaBoost

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-9 08:24