楼主: a智多星
586 0

基于RBF神经网络的交通流量预测算法 [推广有奖]

  • 0关注
  • 14粉丝

会员

学术权威

72%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.1414
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38160 点
帖子
3814
精华
0
在线时间
830 小时
注册时间
2017-9-5
最后登录
2018-4-11

楼主
a智多星 在职认证  发表于 2018-1-7 00:20:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:传统的径向基函数神经网络构造算法大多是根据先验知识和以往的经验事先确定网络的隐层结构,采用传统聚类和最小二乘法训练网络的各项参数,这种算法一般是基于局部搜索机制,使得训练的参数往往陷入局部极小值.提出用遗传算法结合一种新的聚类方法即最疏集(MSS-most scattered set)均值聚类算法和传统的最小二乘法来训练RBF(radial basis function)网络结构参数的方法.该方法不仅避免了网络训练陷入局部极小的问题,而且新的聚类方法的计算效率有所提高.通过把该算法应用在交通流预测方面,取得了令人满意的效果.

原文链接:http://www.cqvip.com//QK/90702A/200704/25941795.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:神经网络 交通流量 神经网 交通流 RBF RBF神经网络 遗传算法 最疏集均值聚类

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-9 10:32