楼主: a智多星
762 0

基于数据挖掘的风电机组变桨系统劣化状态在线辨识方法 [推广有奖]

  • 0关注
  • 14粉丝

会员

学术权威

72%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.1414
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38160 点
帖子
3814
精华
0
在线时间
830 小时
注册时间
2017-9-5
最后登录
2018-4-11

楼主
a智多星 在职认证  发表于 2018-1-9 02:20:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:传统阈值法难以及时准确地辨识出运行设备的劣化状态,针对风力发电机组实施状态检修工作的要求,提出一种风机变桨系统劣化状态在线辨识方法。在阐述风机变桨控制原理和变桨系统监测参数的基础上,建立了以风速、有功功率为输入,风轮转速、3个叶片的桨距角和变桨驱动电流为输出的非线性多输入多输出(multiinputmultioutput,MIM01系统回归模型。将系统特征向量实测值与最小二乘支持向量机(1eastsquaresupportvectormachines,LSSVM)回归计算结果间的偏离定义为系统“观测值”。接着采用高斯混合模型(Gaussianmixturemodel,GMM)拟合多维观测值的分布,并利用风机数据采集与监控系统(supervisorycontrolanddataacquisition,SCADA)中的数据计算系统劣化指数,实现系统状态的在线辨识。最后,以一台发生过变桨轴承保持架和滚动体损坏故障的风机为对象,进行了实例验证,证明了所建模型的准确性和有效性。

原文链接:http://www.cqvip.com//QK/90021X/201609/668820304.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:数据挖掘 电机组 Acquisition Supervisory supervisor 风力发电机组 变桨系统 状态辨识 支持向量机 高斯混合模型

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-31 15:48