楼主: 人工智能-AI
567 0

基于支持向量数据描述的分类方法研究 [推广有奖]

  • 0关注
  • 10粉丝

会员

学术权威

71%

还不是VIP/贵宾

-

威望
0
论坛币
25 个
通用积分
0.0584
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
37770 点
帖子
3776
精华
0
在线时间
853 小时
注册时间
2017-9-5
最后登录
2018-4-11

楼主
人工智能-AI 在职认证  发表于 2018-1-10 02:00:05 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:针对单类数据的分类问题,提出一种基于支持向量数据描述(SVDD)的分类算法。该算法利用SVDD获得包含单类数据的最小球形边界,通过该边界对未知样本数据进行分类,同时采用可行方向方法求解边界优化中的二次规划问题,并在UCI机器学习数据集上将该算法与LS—SVM算法进行比较。实验结果表明,该算法不仅获得了更高的分类准确率,而且具有较低的运行时间。

原文链接:http://www.cqvip.com//QK/95200X/200901/29310639.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:方法研究 cqvip HTTP 机器学习 大家共享 支持向量数据描述 单类分类器 支持向量机 可行方向

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-7 11:18