楼主: 人工智能-AI
1079 0

不均衡问题中的特征选择新算法:Im-IG [推广有奖]

  • 0关注
  • 10粉丝

会员

学术权威

71%

还不是VIP/贵宾

-

威望
0
论坛币
25 个
通用积分
0.0584
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
37770 点
帖子
3776
精华
0
在线时间
853 小时
注册时间
2017-9-5
最后登录
2018-4-11

楼主
人工智能-AI 在职认证  发表于 2018-1-12 05:40:02 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:机器学习中各类别样本数目不等是普遍存在且备受关注的不均衡问题。广泛用于特征选择的信息增益IG(information gain)算法,在这类不均衡问题中的表现却极少被研究。本文在讨论IG算法在不同均衡度数据集上性能的基础上,提出了一种新的解决不均衡问题的特征选择算法Im-IG(imbalanced-information gain)。Im-IG通过提高小类分布在信息熵计算中的权重,优先选入有利于小类正确分离的特征。在提升整体分类性能的同时,着眼于提高小类的正确率。在多个不均衡数据集上的实验结果表明,Im-IG算法能较好地解决IG算法在不均衡问题中的不适应性,是一种有效的不均衡问题特征选择算法。

原文链接:http://www.cqvip.com//QK/90702A/201005/34792718.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:特征选择 不均衡 information Informatio formation Im-IG算法 不均衡问题 特征选择

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-30 05:31