楼主: a智多星
481 0

全球36 km格网土壤水分逐日估算 [推广有奖]

  • 0关注
  • 14粉丝

会员

学术权威

72%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.1414
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38160 点
帖子
3814
精华
0
在线时间
830 小时
注册时间
2017-9-5
最后登录
2018-4-11

楼主
a智多星 在职认证  发表于 2018-1-12 14:00:02 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:土壤水分是陆面生态系统和能量循环的核心变量之一,利用微波遥感技术获得的土壤水分产品的时间分辨率一般是2-3 d,因此精确地获得具有较高时间分辨率的土壤水分成了人们关注的焦点。本文尝试将SMAP(the Soil Moisture Passive and Active)土壤水分和MODIS光学数据相结合,利用广义回归神经网络进行全球36 km土壤水分的估算,提升SMAP土壤水分的时间分辨率。结果显示,广义回归神经网络估算土壤水分与SMAP保持了高相关性(r=0.7528),但其却保留了较高的误差(rmse=0.0914 m^3/m^3)。尽管如此,估算的土壤水分能够很好地保持SMAP土壤水分的整体空间变化,并且提升了土壤水分的时间分辨率(1 d)。此处,本文研究了SMAP土壤水分与MODIS光学数据之间的关系,这对今后利用机器学习进行SMAP土壤水分降尺度研究提供了重要的参考价值。

原文链接:http://www.cqvip.com//QK/86408A/201706/672477856.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Active cqvip ODIS 神经网络 HTML SMAP 土壤水分 估算 广义回归神经网络 MODIS

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-3 13:33