楼主: AIworld
563 0

基于混合Hausdorff距离的多示例分类问题 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
0
论坛币
215 个
通用积分
2.1363
学术水平
1 点
热心指数
1 点
信用等级
1 点
经验
39460 点
帖子
3934
精华
0
在线时间
850 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
AIworld 在职认证  发表于 2018-1-13 12:20:02 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:机器学习领域中,多示例学习是一个重要的研究方向,其显著特点是正包中示例的类别标记具有模糊性。基于不同Hausdorff距离的CKNN分类器在多示例学习中应用较为广泛。经分析可发现,最小和最大Hausdorff距离均有其各自的缺陷,但两者的缺陷具有一定的互补性。针对如何弥补单一Hausdorff距离缺陷的问题,使用AdaBoost算法思想,把基于最小和最大Hausdorff距离的CKNN分类器进行组合,以减少使用单一Hausdorff距离对实验结果造成的影响。通过比较在不同数据集上的实验结果,可知此方法在一定程度上降低了测试误差,降低幅度最大为0.110 0。

原文链接:http://www.cqvip.com//QK/84018X/201705/672157035.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Hausdorff USD Aus adaboost cqvip 多示例学习 Adaboost算法 Hausdorff距离 CKNN分类器

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-31 10:02