楼主: DL-er
489 0

基于条件随机域的临床文本去识别研究 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.0435
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38540 点
帖子
3853
精华
0
在线时间
813 小时
注册时间
2017-9-5
最后登录
2018-6-30

楼主
DL-er 在职认证  发表于 2018-1-14 14:40:01 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:目的本研究旨在有效识别临床文本中的隐私信息,以保护患者隐私,实现临床信息的共享与利用,促进基于临床医学证据研究的发展。方法采用中国四川省某市级区域人口健康信息平台随机抽取的18350条住院小结作为样本,基于条件随机域(conditional random field,CRF)模型,对样本数据中多种PHI类型进行识别。结果人工标注PHI实体总数为32210个,标注一致性达到92.7%,经过对不一致标记进行校正审核,一致性收敛至100%。测试结果评估显示,除病理号、X线片号、89岁以上的年龄以外,其他PHI类型的F值均超过95%,综合F值达到98.72%。结论本研究基于大规模多样化临床文本数据,利用机器学习的方法,实现了高效的自动化临床文本去识别。对于在保护模型的基础上开发更高效的健康大数据去识别算法以及保证去识别技术的一般性和可扩展性的研究还有待探索。

原文链接:http://www.cqvip.com//QK/87554X/201702/672304334.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:conditional condition random dition field 去识别 临床文本 PHI CRF

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-22 07:07