楼主: AIworld
565 0

一种改进的模糊多类支持向量机算法 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
0
论坛币
215 个
通用积分
2.1363
学术水平
1 点
热心指数
1 点
信用等级
1 点
经验
39460 点
帖子
3934
精华
0
在线时间
850 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
AIworld 在职认证  发表于 2018-1-15 08:40:01 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:支持向量机是基于统计学习理论的新一代机器学习技术;由于使用结构风险最小化原则代替经验风险最小化原则,使它较好地解决了小样本情况下的学习问题;针对目前模糊支持向量机方法中,一般使用样本与类中心之间的距离关系构建隶属度函数的不足,以统计学习理论和支持向量机为基础,提出了一种改进的模糊多类支持向量机方法,它是在全局优化分类的基础上,引入模糊隶属函数,然后利用改进的序列最小最优化算法求解模糊多类支持向量机,实验结果显示运行时间减少了,方法是可行的和有效的。

原文链接:http://www.cqvip.com//QK/97801A/201104/37469083.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:支持向量机 向量机 cqvip 统计学习 学术交流 支持向量机 统计学习理论 多类分类 模糊隶属函数

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-26 06:19