楼主: DL-er
723 0

文本特征和复合统计量的领域术语抽取方法 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.0435
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38540 点
帖子
3853
精华
0
在线时间
813 小时
注册时间
2017-9-5
最后登录
2018-6-30

楼主
DL-er 在职认证  发表于 2018-1-21 19:59:59 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:中文领域术语的抽取,是文本知识挖掘的重要内容。传统的中文领域术语抽取方法以人工方法为主,显然这种方法费时费力。目前,处于研究阶段的中文领域术语自动化抽取方法主要有:基于字典的方法、基于规则的方法以及基于统计的方法。但由于中文自然语言的复杂性,这些自动化抽取方法都存在一定的局限性,比如对特定领域的用户字典及规则存在更新速度慢、文本特征考虑不足等,从而导致抽取的效果不佳。针对这一问题,提出了一种基于文本特征和复合统计量的中文领域术语抽取方法,该方法在对中文文档中的词语进行粗粒度筛选后,再综合考虑候选术语的词性、长度、边界词语等文本特征,构造出信息熵和TFIDF等统计量,计算其综合权值,并将综合权值大于设定阈值的候选术语抽取出来,作为最终的领域术语。实验结果表明,该方法在测试语料下,获得了较好的正确率、召回率和F值。

原文链接:http://www.cqvip.com//QK/91782X/201704/672837670.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:特征和 统计量 cqvip 学术交流 交流学习 中文领域术语 文本挖掘 自然语言处理 文本特征

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-1-24 11:38