楼主: 论文库
588 0

一种基于集成学习与类指示器的文本分类方法 [推广有奖]

  • 0关注
  • 13粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
0
论坛币
5 个
通用积分
0.0363
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38440 点
帖子
3839
精华
0
在线时间
836 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
论文库 在职认证  发表于 2018-1-24 21:59:59 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:提出了一种基于集成学习机制与类指示器的文本分类方法.该方法利用AdaBoost.MH算法框架,在每一轮次中,自适应地计算类指示度,通过加权组合所有成员类指示度,获得对理想类指示度的一种逼近.利用最终的类指示度所得到的分类器不仅简单、易于更新,而且泛化能力强.在标准语料集TanCorp-12上的实验表明,该方法适用于对分类效率要求较高的实时应用,同时可以利用集成学习进行某些知识的精确学习,并将这些知识用于弱分类器,从而实现简单高效的分类.

原文链接:http://www.cqvip.com//QK/95054X/201004/33816593.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:指示器 adaboost boost cqvip 交流学习 机器学习 集成学习 文本分类 类指示器

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-1-27 09:03