楼主: AIworld
498 0

基于上下文特征分类的评论长句切分方法 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
0
论坛币
215 个
通用积分
2.1363
学术水平
1 点
热心指数
1 点
信用等级
1 点
经验
39460 点
帖子
3934
精华
0
在线时间
850 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
AIworld 在职认证  发表于 2018-1-25 10:40:06 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:商品评论文本对消费者和商家的决策都有重要参考价值。用户在评论中使用的语言较为随意,语法结构不规则,给文本分析带来很大难度。正确的句子切分是文本信息抽取和挖掘工作的基础。为解决商品评论中用户省略标点情况下的句子切分问题,基于上下文特征,提出使用机器学习的方法对评论长句进行切分。根据大规模评论语料的统计特征选取候选句子切分点,对每一个候选句子切分点提取其上下文特征,并根据语料的统计特征,使用逻辑回归对候选切分点进行分类。实验结果表明,该方法能够有效解决商品评论中用户省略标点情况下的句子切分问题。

原文链接:http://www.cqvip.com//QK/95200X/201509/666059253.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:上下文 cqvip 学习的方法 商品评论 HTML 句子切分 标点省略 机器学习 上下文特征 N元文法

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-27 04:13