楼主: AIworld
595 0

一种基于Co—Training的海洋文献分类方法 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
0
论坛币
215 个
通用积分
2.1363
学术水平
1 点
热心指数
1 点
信用等级
1 点
经验
39460 点
帖子
3934
精华
0
在线时间
850 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
AIworld 在职认证  发表于 2018-1-25 17:20:03 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:使用有监督机器学习方法进行海洋文献的分类往往存在人工标注量太大的缺点,针对这个问题,提出利用半监督机器学习中的协同训练(Co—training)方法来实现减小人工标注量的目标。该方法从2个View分别训练不同的分类器,在此基础上,根据少量有标注文档从大量无标注文档中获取有用信息,通过协同训练来提升2个分类器的性能,并训练出最终分类模型。实验结果表明,在人工标注仅2篇文献的条件下,该方法最终的分类性能十分接近需人工标注1500多篇文献的有监督分类器。这说明将Co-training方法应用于海洋文献分类可以大大减小人工标注量,并有着较为良好的分类性能。

原文链接:http://www.cqvip.com//QK/92605A/201002/32919754.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Training Train rain ning Aini 海洋文献 文本分类 机器学习 半监督学习 协同训练

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-30 04:21