楼主: 人工智能-AI
550 0

LP-SVM在CUDA架构上的加速实现 [推广有奖]

  • 0关注
  • 10粉丝

会员

学术权威

71%

还不是VIP/贵宾

-

威望
0
论坛币
25 个
通用积分
0.0584
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
37770 点
帖子
3776
精华
0
在线时间
853 小时
注册时间
2017-9-5
最后登录
2018-4-11

楼主
人工智能-AI 在职认证  发表于 2018-1-26 13:00:01 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:为了能在PC机上处理大规模数据集问题,提出了使用CUDA架构对LP-SVM的加速实现方法。该方法针对PC机内存小的缺点,对SVM的分解算法进行改编,得到求解LP-SVM的分解算法。LP—SVM分解算法每次只需要求解一个小规模的线性规划问题,避免一次性把所有训练数据都装进内存。同时把求解线性规划中比较耗时的矩阵运算,移植到CUDA上进行,提高了求解效率。实验结果表明:LP—SVM算法在经过CUDA加速以后,算法的执行效率提高了10—35倍。

原文链接:http://www.cqvip.com//QK/95792B/201404/49900425.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:CUDA SVM cqvip 线性规划 大家共享 机器学习 线性规划 支持向量机 图形处理器 统一计算设备架构

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-9 08:17