楼主: AIworld
578 1

基于BDI框架的多Agent动态协作模型与应用研究 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
0
论坛币
215 个
通用积分
2.1434
学术水平
1 点
热心指数
1 点
信用等级
1 点
经验
39460 点
帖子
3934
精华
0
在线时间
850 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
AIworld 在职认证  发表于 2018-1-27 09:20:01 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:近年来,多Agent学习已经成为人工智能和机器学习研究方向发展最迅速的领域之一.将强化学习和BDI思维状态模型相结合,形成针对多Agent的动态协作模型.在此模型中,个体最优化概念失去其意义,因为每个Agent的回报,不仅取决于自身,而且取决于其它Agent的选择.模型采用AFS神经网络对输入状态空间进行压缩,提高强化学习的收敛速度.与此同时,利用模拟退火算法启发性地指明动作空间搜索方向,使其跳出局部最小点,避免迭代步数的无限增长.理论分析和在机器人足球领域的成功应用,都证明了基于BDI框架的多Agent动态协作模型的有效性.

原文链接:http://www.cqvip.com//QK/94913X/200207/11392924.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:agent 应用研究 Age BDI cqvip 多AGENT 强化学习 BDI模型 AFS神经网络 模拟退火算法

沙发
钱学森64 发表于 2018-1-27 09:35:49
谢谢分享

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-10 15:34