楼主: a智多星
548 0

自动图像标注技术研究进展 [推广有奖]

  • 0关注
  • 14粉丝

会员

学术权威

72%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.1414
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38160 点
帖子
3814
精华
0
在线时间
830 小时
注册时间
2017-9-5
最后登录
2018-4-11

楼主
a智多星 在职认证  发表于 2018-1-27 13:00:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:近年来,自动图像标注(Automatic Image Annotation,AIA)技术已经成为图像语义理解研究领域的热点。其基本思想是利用已标注图像集或其他可获得的信息自动学习语义概念空间与视觉特征空间的潜在关联或者映射关系,来预测未知图像的标注。随着机器学习理论的不断发展,包括相关模型、分类器模型等不同的学习模型已经被广泛地应用于自动图像标注研究领域。现有的自动图像标注算法可以大致分为基于分类的标注算法、基于概率关联模型的标注算法以及基于图学习的标注算法等三大类。首先根据自动图像标注算法的特征提取及表示机制不同,将现有算法划分为基于全局特征和基于区域划分的自动图像标注方法。其次,在基于区域划分的自动图像标注算法中,按照学习算法的不同,将其划分为基于分类的标注方法、基于概率关联模型的标注方法以及基于图学习的标注方法,并分别介绍各类别中具有代表性的标注算法及其优缺点。然后给出了自动图像标注最新的研究进展,最后探讨自动图像标注的进一步研究方向。http://www.cqvip.com//QK/92817X/201107/38531568.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:研究进展 Automatic cqvip image ATION 自动图像标注 多示例学习 多标记学习 图学习 概率建模

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-2 04:44