楼主: AIworld
480 0

基于小波分解和数据挖掘中决策树算法的电能质量扰动识别方法 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
0
论坛币
215 个
通用积分
2.1434
学术水平
1 点
热心指数
1 点
信用等级
1 点
经验
39460 点
帖子
3934
精华
0
在线时间
850 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
AIworld 在职认证  发表于 2018-1-29 00:00:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:针对短时电能质量变化和暂态扰动现象的不同特点,提出了一种基于小波分解和数据挖掘中决策树算法的电能质量扰动(power quality disturbance,PQD)识别方法。建立了正弦信号和6种常见PQD信号的数学模型,通过小波分解得到了上述信号的特征量,结合决策树方法实现了对PQD的自动分类,并通过合理选择小波类型、分类算法和去噪方法提高了PQD的分类精度。实验结果验证了该识别方法的准确性和高效性。http://www.cqvip.com//QK/91996X/200723/26014401.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:识别方法 数据挖掘 决策树 Disturbance quality 电能质量扰动 小波变换 数据挖掘 决策树 特征提取

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-9 18:01