楼主: 人工智能-AI
766 0

神经网络中LMBP算法收敛速度改进的研究 [推广有奖]

  • 0关注
  • 10粉丝

会员

学术权威

71%

还不是VIP/贵宾

-

威望
0
论坛币
25 个
通用积分
0.0584
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
37770 点
帖子
3776
精华
0
在线时间
853 小时
注册时间
2017-9-5
最后登录
2018-4-11

楼主
人工智能-AI 在职认证  发表于 2018-1-30 11:20:01 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:文章时标准BP算法收敛慢的问题进行了分析.并针对其目前最快的改进版本Levenberg—Marquardt BP(LMBP)进行了深入研究,发现其中涉及的矩阵[J^T J+μkI]求逆是其收敛速度的瓶颈。通过使用LU分解法去除耗时的矩阵求逆运算,极大地减少了LMBP的计算量。此外,简化求增广Marquardt Sensitivity矩阵的步骤.也在一定程度上减少了LMBP的计算量。笔者用Microsoft Visual C++ 6编程实现了改进后的LMBP算法.发现对这两方面的改进.大大提高了收敛速度。文章对Matlab的基于最速下降的BP算法(Traingdx)、Matlab改进的LMBP算法(Trainlm)、LMBP和作者改进的LMBP(ILMBP)进行了大量的试验。结果发现,ILMBP的平均收敛速度比LMBP快约23倍.比Trainlm算法快约9倍。http://www.cqvip.com//QK/91690X/200616/22027936.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:神经网络 神经网 Sensitivity marquardt Microsoft BP算法 Levenberg-Marquardt算法 LU分解

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-25 12:52