楼主: DL-er
597 0

基于最大信息熵模型的异常流量分类方法 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.0435
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38540 点
帖子
3853
精华
0
在线时间
813 小时
注册时间
2017-9-5
最后登录
2018-6-30

楼主
DL-er 在职认证  发表于 2018-2-1 10:20:02 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:最大信息熵原理已被成功地应用于各种自然语言处理领域,如机器翻译、语音识别和文本自动分类等,提出了将其应用于互联网异常流量的分类。由于最大信息熵模型利用二值特征函数来表达和处理符号特征,而KDD99数据集中存在多种连续型特征,因此采用基于信息熵的离散化方法对数据集进行预处理,并利用CFS算法选择合适的特征子集,形成训练数据集合。最后利用BLVM算法进行参数估计,得到满足最大熵约束的指数形式的概率模型。通过实验,比较了最大信息熵模型和Naive Bayes、Bayes Net、SVM与C4.5决策树方法之间的精度、召回率、F-Measure,发现最大信息熵模型具有良好的综合性能,尤其在训练数据集样本数量有限的情况下仍然能保持较高的分类精度,在实际应用中具有广阔的前景。http://www.cqvip.com//QK/93231X/201203/41009609.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:信息熵 Measure Bayes 训练数据集 naive 最大信息熵模型 异常流量 离散化 特征选择 参数估计

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-1-25 11:11