楼主: DL-er
467 0

基于信息熵的支持向量回归机训练样本长度选择 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.0435
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38540 点
帖子
3853
精华
0
在线时间
813 小时
注册时间
2017-9-5
最后登录
2018-6-30

楼主
DL-er 在职认证  发表于 2018-1-9 16:20:04 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:支持向量回归机(support vector regression,SVR)是近年来发展起来的一种通用的机器学习方法。目前已被广泛应用于工业、经济等很多领域,取得了良好的效果。但对于大规模非平稳数据的训练学习,会因为规模较大和样本长度选择的问题,影响到预测结果的精度。为了有效缩减训练样本长度,选择出合适的训练样本,提出基于信息熵的训练样本长度选择方法。该方法利用信息熵对数据的平稳性进行度量,从而选择出最平稳的数据进行学习。该方法不但减少了数据长度、节省了学习时间,同时也提高了预测结果的精度。

原文链接:http://www.cqvip.com//QK/90021X/201020/34634550.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:信息熵 regression regressio regress Support 支持向量回归机 信息熵 故障诊断 状态预测 数据挖掘

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-30 11:57