楼主: AIworld
620 0

应用人工神经网络预测糖尿病/糖耐量异常 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
0
论坛币
215 个
通用积分
2.1363
学术水平
1 点
热心指数
1 点
信用等级
1 点
经验
39460 点
帖子
3934
精华
0
在线时间
850 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
AIworld 在职认证  发表于 2018-2-6 19:20:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:目的在流行病学调查资料的基础上,探讨学习向量量化(LVQ)网络用于糖尿病(DM)/糖耐量异常(IGT)疾病状态的分类预测的前景.方法采用LVQ网络和判别分析方法对某矿区糖尿病现况调查资料和某综合性医院的DM病例-对照资料,进行DM/IGT/正常状态的判别比较;同时人为设置变量缺损值,检验LVQ网络对缺失数据的适应性.结果 LVQ网络结构为25→13→3;网络判断DM、IGT的灵敏度分别为70.45%、64.79%,特异度为100.00%,准确度为96.98%,对血糖异常者的正确判断率为92.45%.利用逐步判别分析建立的含11个变量的判别方程判断DM、IGT的灵敏度分别为67.05%、60.56%,特异度为89.75%,准确率为87.34%,对血糖异常者的正确判断率为85.53%.对来自某综合性医院的DM病例-对照资料进行模型验证发现,LVQ网络预测效果优于判别的分析,网络能识别出全部对照及92.37%的病例,判别准确率为96.19%.LVQ网络对带缺失项样本的误判比例为1/30,判别分析则为7/30.结论利用LVQ网络进行疾病分类预测,不仅能获得更好的预测效果,而且对资料的类型、分布不作任何限制,也不需要对分析变量做任何处理,还能很好地处理带缺失项的资料,是一种很好的流行病学分类预测新方法.http://www.cqvip.com//QK/94139X/200310/8624497.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:人工神经网络 神经网络 人工神经 神经网 糖尿病 人工神经网络 LVQ网络 判别分析

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-22 18:03