楼主: 论文库
438 0

神经网络增强学习的梯度算法研究 [推广有奖]

  • 0关注
  • 13粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
0
论坛币
5 个
通用积分
0.0363
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38440 点
帖子
3839
精华
0
在线时间
836 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
论文库 在职认证  发表于 2018-2-8 13:00:01 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:针对具有连续状态和离散行为空间的Markov决策问题,提出了一种新的采用多层前馈神经网络进行值函数逼近的梯度下降增强学习算法.该算法采用了近似贪心且连续可微的Boltzmann分布行为选择策略,通过极小化具有非平稳行为策略的Bellman残差平方和性能指标,以实现对Markov决策过程最优值函数的逼近.对算法的收敛性和近似最优策略的性能进行了理论分析.通过Mountain-Car学习控制问题的仿真研究进一步验证了算法的学习效率和泛化性能.http://www.cqvip.com//QK/90818X/200302/7412041.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:神经网络 学习的 神经网 Boltzmann Mountain 神经网络 增强学习 梯度算法 Markov决策过程 值函数逼近

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-27 06:53