楼主: 论文库
645 0

基于多分类器协同学习的卷积神经网络训练算法 [推广有奖]

  • 0关注
  • 13粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
0
论坛币
5 个
通用积分
0.0363
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38440 点
帖子
3839
精华
0
在线时间
836 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
论文库 在职认证  发表于 2018-2-18 20:20:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:卷积神经网络(CNN)是一类重要的深度神经网络,然而其训练过程需要大量的已标记样本,从而限制了其实际应用。针对这一问题,分析了CNN分类器的协同学习过程,给出了基于迭代进化的分类器协同训练算法CAMC。该算法结合了CNN和多分类器协同训练的优势,首先采用不同的卷积核提取出多种样本特征以产生不同的CNN分类器;然后利用少量的已标记样本和大量的未标记样本对多个分类器进行协同训练,以持续提高分类性能。在人脸表情标准数据集上的实验结果表明,相对于传统的表情特征识别法LBP和Gabor,CAMC能够在分类过程中利用未标记样本持续实现性能提升,从而具有更高的分类准确率。

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:神经网络 学习的 协同学 神经网 多分类 机器学习 卷积神经网络 协同训练 图像识别 多分类器

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-21 15:19