楼主: DL-er
554 0

基于支持向量机的图象插值及错误隐匿策略 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.0435
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38540 点
帖子
3853
精华
0
在线时间
813 小时
注册时间
2017-9-5
最后登录
2018-6-30

楼主
DL-er 在职认证  发表于 2018-2-9 01:59:59 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:如何对在有损网络环境中传输的视频进行错误隐匿是视频传输研究中的基本问题.支持向量机(SVM)是一种新兴的通用学习算法,是国际上机器学习领域新的热点.为了取得比现有方法更好的错误隐匿效果,提出了一种新的基于支持向量机回归估计的错误隐匿策略,首先建立了基于支持向量机回归估计的图象插值算法,并将其引入到错误隐匿问题中,然后用空域插值的方法达到错误隐匿的目的.实验结果表明,与目前采用的各种错误隐匿策略相比较,基于支持向量机的错误隐匿策略在错误隐匿效果和推广性能上都具有一定的优越性.http://www.cqvip.com//QK/90287X/200206/6497462.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:支持向量机 向量机 cqvip 回归估计 大家共享 图象插值 错误隐匿 支持向量机 非线性插值 机器学习

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-3 20:17