楼主: 人工智能-AI
480 0

大样本情况下的一种新的SVM迭代算法 [推广有奖]

  • 0关注
  • 10粉丝

会员

学术权威

71%

还不是VIP/贵宾

-

威望
0
论坛币
25 个
通用积分
0.0584
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
37770 点
帖子
3776
精华
0
在线时间
853 小时
注册时间
2017-9-5
最后登录
2018-4-11

楼主
人工智能-AI 在职认证  发表于 2018-2-9 06:40:02 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:针对SVM方法在大样本情况下学习和分类速度慢的问题,提出了大样本情况下的一种新的SVM迭代训练算法。该算法利用K均值聚类算法对训练样本集进行压缩,将聚类中心作为初始训练样本集,减少了样本间的冗余,提高了学习速度。同时为了保证学习的精度,采用往初始训练样本集中加入边界样本和错分样本的策略来更新训练样本集,迭代训练直到错分样本数目不变为止。该文提出的基于K均值聚类的SVM迭代算法能在保持学习精度的同时,减小训练样本集及决策函数的支持向量集的规模,从而提高学习和分类的速度。http://www.cqvip.com//QK/95200X/200708/24295851.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:迭代算法 SVM 大样本 cqvip 大家共享 支持向量机 机器学习 K均值聚类算法 迭代算法

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-2-5 09:27