楼主: a智多星
389 0

基于极限学习机的左束支传导阻滞辅助诊断研究 [推广有奖]

  • 0关注
  • 14粉丝

会员

学术权威

72%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.1485
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38160 点
帖子
3814
精华
0
在线时间
830 小时
注册时间
2017-9-5
最后登录
2018-4-11

楼主
a智多星 在职认证  发表于 2018-2-9 16:00:02 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:左束支传导阻滞(LBBB)作为临床常见的一种心律失常,是左心室收缩功能减低、患者死亡率增加的标志;利用机器学习算法对其进行辅助诊断,将对LBBB早发现、早治疗起到积极的推动作用。然而,由于目前常用的支持向量机(SVM)等传统的机器学习算法容易产生局部最优解,准确度有待提高,因此提出一种基于极限学习机(ELM)的LBBB辅助诊断算法。首先,利用小波进行心电信号预处理,包括基线漂移、肌电噪声及工频干扰的去除;接着,确定QRS波群与T波位置;然后,根据临床上LBBB患者比正常人的QRS波群持续时间延长等特点,建立融合时域、形态与能量3类特征的特征模型;最后,利用该模型提取的特征集合,提出基于ELM的LBBB辅助诊断算法。此外,在MIT_BIH数据库中的5 000份ECG数据上进行实验验证,结果表明所提出的预处理与波形提取算法能有效去除噪声并提取QRS-T特征波;在LBBB的判别上,相比SVM算法、ELM算法的训练时间缩短了88.5%;同时,在准确率、灵敏度、特异度、LBBB检出率和正常人检出率的指标上,分别提升2.4%、5.4%、1.2%、3.6%和2%。因此,基于ELM的LBBB辅助诊断算法具有明显优势。

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:学习机 机器学习算法 支持向量机 学习算法 机器学习 极限学习机 左束支传导阻滞 机器学习算法 心电信号处理 特征提取

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-2-16 07:49