楼主: a智多星
503 0

一种具有O(1/T)收敛速率的稀疏随机算法 [推广有奖]

  • 0关注
  • 14粉丝

会员

学术权威

72%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.1414
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38160 点
帖子
3814
精华
0
在线时间
830 小时
注册时间
2017-9-5
最后登录
2018-4-11

楼主
a智多星 在职认证  发表于 2018-2-10 03:00:04 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:随机梯度下降(stochastic gradient descent,SGD)是一种求解大规模优化问题的简单高效方法,近期的研究表明,在求解强凸优化问题时其收敛速率可通过α-suffix平均技巧得到有效的提升.但SGD属于黑箱方法,难以得到正则化优化问题所期望的实际结构效果.另一方面,COMID(composite objective mirror descent)是一种能保证L1正则化结构的稀疏随机算法,但对于强凸优化问题其收敛速率仅为O(logT/T).主要考虑“L1+Hinge”优化问题,首先引入L2强凸项将其转化为强凸优化问题,进而将COMID算法和α-suffix平均技巧结合得到L1MD-α算法.证明了L1MD-α具有O(1/T)的收敛速率,并且获得了比COMID更好的稀疏性.大规模数据库上的实验验证了理论分析的正确性和所提算法的有效性.

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Stochastic composite Objective gradient Stochast 机器学习 随机优化 稀疏性 L1正则化 COMID

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-9 10:08