楼主: a智多星
513 0

选择性集成算法分类与比较 [推广有奖]

  • 0关注
  • 14粉丝

会员

学术权威

72%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.1485
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38160 点
帖子
3814
精华
0
在线时间
830 小时
注册时间
2017-9-5
最后登录
2018-4-11

楼主
a智多星 在职认证  发表于 2018-2-10 06:40:02 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:选择性集成是当前机器学习领域的研究热点之一。由于选择性集成属于NP"难"问题,人们多利用启发式方法将选择性集成转化为其他问题来求得近似最优解,因为各种算法的出发点和描述角度各不相同,现有的大量选择性集成算法显得繁杂而没有规律。为便于研究人员迅速了解和应用本领域的最新进展,本文根据选择过程中核心策略的特征将选择性集成算法分为四类,即迭代优化法、排名法、分簇法、模式挖掘法;然后利用UCI数据库的20个常用数据集,从预测性能、选择时间、结果集成分类器大小三个方面对这些典型算法进行了实验比较;最后总结了各类方法的优缺点,并展望了选择性集成的未来研究重点。

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:选择性 机器学习 最新进展 各种算法 交流学习 集成学习 选择性集成 排名法 分簇法 迭代优化法

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-7 06:33