楼主: DL-er
730 0

基于Bootstrap-异质SVM集成学习的肺结节分类方法 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.0435
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38540 点
帖子
3853
精华
0
在线时间
813 小时
注册时间
2017-9-5
最后登录
2018-6-30

楼主
DL-er 在职认证  发表于 2018-2-10 08:20:02 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:为了对肺结节的良、恶性诊断形成定量的客观分析和提高良、恶性的分类正确率,针对肺结节CT图像提出了一种基于Bootstrap-异质SVM的集成学习方法.首先,采用模糊聚类图像分割方法提取肺结节,计算提取出的结节特征参数用于学习分类.然后,以支持向量机(SVM)在不同核函数下的不同性能构造高差异性的子学习器,在子学习器中引入Bootstrap算法来提高其学习精度,通过集成学习方法实现学习器分类性能的整体改善.对146个(40个良性,106个恶性)肺结节样本分别利用单个SVM、BP神经网络和Bootstrap-异质SVM集成学习方法进行了学习测试,获得的最高分类正确率分别为80%,、82%,和90%,.实验结果表明:提出的Bootstrap-异质SVM集成学习方法将单个SVM分类器的最高正确率提高了10%,,同时也获得了高于BP神经网络8%,的分类正确率和较好的学习稳定性,有效地改善了机器学习在不平衡数据集下对肺结节良恶性的分类能力.

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Bootstrap Bootstra boots Trap boot 肺结节 模糊聚类 BOOTSTRAP 异质SVM 集成学习

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-21 13:56