楼主: AIworld
549 0

基于X射线图像的厚钢管焊缝中气孔缺陷的自动检测 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
0
论坛币
215 个
通用积分
2.1363
学术水平
1 点
热心指数
1 点
信用等级
1 点
经验
39460 点
帖子
3934
精华
0
在线时间
850 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
AIworld 在职认证  发表于 2018-2-13 22:20:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:由于厚钢管X射线图像强度分布不均匀,对比度低、噪声大,且气孔缺陷的大小、形状、位置、对比度各异,使得自动检测各种类型的气孔较为困难。针对传统缺陷检测算法中手工标记缺陷数据工作量大,焊缝边缘难以准确提取等问题,提出一种新的无监督学习的各种气孔缺陷检测算法。首先,采用快速独立分量分析从钢管X射线图像集合中学习一组独立基底,并用该基底的线性组合来选择性重构带气孔缺陷的测试图像;随后,测试图像与其重构图像相减获得差异图像,通过全局阈值从差异图像中将各种气孔分割出来。实验的训练集有320幅,测试集有60幅图像,所提算法检测结果的平均敏感性和准确率为90.5%和99.7%。实验结果表明,该算法无需手工标记数据或提取焊缝边缘,可准确检测各种气孔缺陷。

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:x射线 交流学习 大家共享 线性组合 检测结果 X射线图像 独立分量分析 缺陷检测 机器学习 厚钢管

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-6 03:28