楼主: 人工智能-AI
734 0

基于混合神经网络的非线性预测函数控制 [推广有奖]

  • 0关注
  • 10粉丝

会员

学术权威

71%

还不是VIP/贵宾

-

威望
0
论坛币
25 个
通用积分
0.0584
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
37770 点
帖子
3776
精华
0
在线时间
853 小时
注册时间
2017-9-5
最后登录
2018-4-11

楼主
人工智能-AI 在职认证  发表于 2018-2-15 19:00:01 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:针对基本预测函数控制只能用于线性对象的控制这一不足,提出了基于混合神经网络的非线性预测函数控制.混合神经网络由BP网络和线性神经网络串连组成.采用混合神经网络对可用Hammerstein模型描述的非线性对象进行有效的辨识.其中,BP网络反映了非线性静态增益,线性神经网络反映了线性动态子系统.利用BP网络求出非线性静态增益的逆并与非线性对象串联,抵消非线性对象中的非线性静态增益部分,将非线性对象的控制问题转化为对线性对象的控制问题,实现了对非线性对象的预测函数控制.当被控对象的特性发生变化时,可对混合神经网络权值及时进行修正并调整控制器参数使控制系统始终保持良好的控制性能.仿真结果表明,此控制系统具有良好的控制效果.

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:神经网络 神经网 非线性 HAMMER Stein 混合神经网络 Hammerstein模型 预测函数控制 非线性静态增益 线性动态子系统

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-22 15:08