楼主: a智多星
612 0

基于节点相似度的网络社团检测算法研究 [推广有奖]

  • 0关注
  • 14粉丝

会员

学术权威

72%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.1414
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38160 点
帖子
3814
精华
0
在线时间
830 小时
注册时间
2017-9-5
最后登录
2018-4-11

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:社团结构是众多复杂网络的统计特性之一,挖掘网络中存在的社团结构日益受到人们的普遍关注。网络中的社团结构检测本质上类似于传统机器学习领域的聚类分析,其关键问题在于如何定义网络中节点间的相似度。首先提出了基于节点相似度的节点分裂算法SGN,相比传统的基于边界数(betweenness)的节点分裂算法GN,SGN在速度和精度上都有明显改善;接着,在利用各种节点相似度计算方法得到节点间的相似度之后,采用几种经典的聚类分析算法对网络进行社团划分,在模拟数据和真实数据上的实验表明:基于网络拓扑结构信息的signal和regular方法优于基于网络节点局部信息的Jaccard方法,而且对于复杂网络社团划分问题,如果选择好的网络节点相似度构造方法,已有的基于相似度矩阵的聚类分析算法都能快速有效地对网络社团进行划分。

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:相似度 Jaccard Regular Between Signal 复杂网络 社团结构 近邻传播 信号传递 节点相似度

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加JingGuanBbs
拉您进交流群

京ICP备16021002-2号 京B2-20170662号 京公网安备 11010802022788号 论坛法律顾问:王进律师 知识产权保护声明   免责及隐私声明

GMT+8, 2024-11-5 08:07