楼主: AIworld
521 0

基于数据挖掘的电力系统中长期负荷预测新方法 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
0
论坛币
215 个
通用积分
2.1363
学术水平
1 点
热心指数
1 点
信用等级
1 点
经验
39460 点
帖子
3934
精华
0
在线时间
850 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
AIworld 在职认证  发表于 2018-2-16 11:40:01 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:中长期电力系统负荷预测受大量不确定因素的影响,研究表明聚类方法能够将各种影响因素综合引入预测模型。所提出的改进聚类算法结合了层次方法中的变色龙(Chameleon)法与基于密度算法的优点,实现了最优聚类,同时还弥补了单纯层次法无法对复杂形状数据聚类和算法不可逆的缺点。算法在进行聚类前以不完备数据分析补全法算法(ROUSTIDA)为数据处理前导.确保了聚类所需历史数据的准确性和完备性。实践证明该算法具有计算速度快、预测精度高、预测误差变化小等优点。尤其在影响因素繁多、历史数据不完整或不准确时,改进算法更能体现出优越性。

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:数据挖掘 负荷预测 新方法 中长期 Hamel 电力系统 中长期负荷预测 数据挖掘 聚类分析 不完备数据分析

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-3 03:05