楼主: a智多星
724 0

基于改进PSO-BP神经网络和D-S证据理论的大型变压器故障综合诊断 [推广有奖]

  • 0关注
  • 14粉丝

会员

学术权威

72%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.1485
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38160 点
帖子
3814
精华
0
在线时间
830 小时
注册时间
2017-9-5
最后登录
2018-4-11

楼主
a智多星 在职认证  发表于 2018-2-21 01:40:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:阐述了已有变压器故障诊断方法的不足,并将信息融合的基本思想引入变压器故障诊断中。针对电力变压器故障综合诊断的特点和要求,运用改进粒子群优化一反向传播(PSO-BP)算法训练神经网络并结合D-S证据理论,提出了一种基于信息融合技术的变压器故障综合诊断决策模型。该模型以油中溶解气体色谱分析为基础,结合变压器常规电气试验结论与现场运行、维修经验,得出了较为可靠的诊断结果,实例验证也证明了该方法的有效性。

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:BP神经网络 神经网络 神经网 变压器 PSO 电力变压器 故障诊断 信息融合 改进粒子群算法 D-S证据理论

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-1-28 04:23