楼主: hhb83
5480 9

[教与学] 博弈论与线性规划 [推广有奖]

  • 0关注
  • 0粉丝

本科生

0%

还不是VIP/贵宾

-

威望
0
论坛币
956 个
通用积分
0
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
2845 点
帖子
25
精华
0
在线时间
91 小时
注册时间
2009-7-29
最后登录
2019-2-23

楼主
hhb83 发表于 2009-12-5 15:23:05 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
大家好,我想问一下一般用线性规划的方式是怎么解博弈论的。因为规划一次只能对一个局中人求最优,那又怎么博弈呢。是对每个局中人一次改变策略反复用线性规划求解并且比较么。我刚学,表达的可能有些外行,还请大家见谅,谢谢!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:线性规划 博弈论 规划求解 局中人 大家好 博弈论 线性规划

沙发
lanyjie 发表于 2009-12-5 18:39:19
For a 0-sum 2-player static game:
let V be the value of the game, and let x[i] be the probability for strategy i for player 1.
Let a[i,j] be the pay-off matrix.

Max V
s.t. sum_i x[i] == 1 //sum of probability
s.t. V <= sum_i a[i,j]x[i] , forall j //player 2 plays minimize V
x[i] >= 0

藤椅
hhb83 发表于 2009-12-6 13:03:05
谢谢!那请问多人非零和是什么样子呢,从上面的式子中我推不太出来啊,谢谢!

板凳
zilan# 发表于 2009-12-6 21:29:30
数学的应用。。。

报纸
咖啡柠檬_519 发表于 2009-12-7 09:57:23
~~~~~~~~~~~~~~

地板
lanyjie 发表于 2009-12-7 15:50:48
hhb83 发表于 2009-12-6 13:03
谢谢!那请问多人非零和是什么样子呢,从上面的式子中我推不太出来啊,谢谢!
For non-0-sum games: you probably need Mixed Integer Programs.

for 2-player  non-0-sum game:

for player 1 (pay-off: a[i,j]):
x: mixed strat
s: 0-1 varialbe, 1 if strat i is usable.
v: expected pay-off of strat i
maxv:= max_i v

for player 2 (pay-off b[i,j]):
y[j]: mixed start
t[j]: 0-1 variable, 1 if strat j is usable
w[j]: expected pay=off of strat j
maxw:=max_j w[j]

Max maxv + maxw

ST:

sum x =1
sum y[j] = 1
v = sum a[i,j] y[j],  forall i
w[j] = sum b[i,j] x, forall j
...
M (1 - s) >=  maxv - v //big-M method
0 <= x <= s //x must be zero if s = 0

M ( 1 - t[j] ) >= maxw - w[j]
0 <= w[j] <= t[t]

7
lanyjie 发表于 2009-12-7 15:53:45
lanyjie 发表于 2009-12-7 15:50
For non-0-sum games: you probably need Mixed Integer Programs.

for 2-player  non-0-sum game:

for player 1 (pay-off: a[i,j]):
x: mixed strat
s: 0-1 varialbe, 1 if strat i is usable.
v: expected pay-off of strat i
maxv:= max_i v

for player 2 (pay-off b[i,j]):
y[j]: mixed start
t[j]: 0-1 variable, 1 if strat j is usable
w[j]: expected pay=off of strat j
maxw:=max_j w[j]

Max maxv + maxw

ST:

sum x =1
sum y[j] = 1
v = sum a[i,j] y[j],  forall i
w[j] = sum b[i,j] x, forall j
...
M (1 - s) >=  maxv - v //big-M method
0
Note: that may not give all possible saddle points of the game, but rather gives the saddle point that maximizes the total pay-offs. To obtain other saddle-points, you need to play with the weights attached to maxv and maxw.

8
hhb83 发表于 2009-12-7 18:28:40
大体明白了,非常感谢!!

9
gamandady 发表于 2009-12-11 15:28:38
thanks,好好研究

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-9 03:17