楼主: chicu
3873 10

[书籍介绍] Sufficient Dimension Reduction: Methods and Applications with R [推广有奖]

  • 1关注
  • 14粉丝

已卖:3305份资源

副教授

34%

还不是VIP/贵宾

-

威望
1
论坛币
88016 个
通用积分
656.5880
学术水平
53 点
热心指数
94 点
信用等级
44 点
经验
9074 点
帖子
130
精华
1
在线时间
631 小时
注册时间
2014-8-31
最后登录
2025-7-25

楼主
chicu 在职认证  发表于 2018-6-19 23:23:44 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币

Sufficient Dimension Reduction: Methods and Applications with R

  • Hardcover:  304 pages
  • Publisher:  Chapman and Hall/CRC (May 1, 2018)
  • Language:  English
  • ISBN-10:  1498704476
  • ISBN-13:  978-1498704472



Sufficient dimension reduction is a rapidly developing research field that has wide applications in regression diagnostics, data visualization, machine learning, genomics, image processing, pattern recognition, and medicine, because they are fields that produce large datasets with a large number of variables.  Sufficient Dimension Reduction: Methods and Applications with R  introduced the basic theories and the main methodologies, provides practical and easy-to-use algorithms and computer codes to implement these methodologies, and surveys the recent advances at the frontiers of this field.


Features

  • Provides comprehensive coverage of this emerging research field.

  • Synthesizes a wide variety of dimension reduction methods under a few unifying principles such as projection in Hilbert spaces, kernel mapping, and von Mises expansion.

  • Reflects most recent advances such as nonlinear sufficient dimension reduction, dimension folding for tensorial data, as well as sufficient dimension reduction for functional data.

  • Includes a set of computer codes written in R that are easily implemented by the readers.

  • Uses real data sets available online to illustrate the usage and power of the described methods.


Sufficient dimension reduction has undergone momentous development in recent years, partly due to the increased demands for techniques to process high-dimensional data, a hallmark of our age of Big Data. This book will serve as the perfect entry into the field for the opening wreath Or a handy reference for the advanced ones.


The author


Li bing  Obtained His Ph.D. from The University of Chicago. Currently of He is a Professor of The Pennsylvania State University Statistics. Research Interests His-Cover Sufficient Dimension Reduction, Statistical Graphical Models, Functional Data Analysis, Machine Learning, Estimating Equations and quasilikelihood , and robust statistics. He is a fellow of the Institute of Mathematical Statistics and the American Statistical Association. He is an Associate Editor for The Annals of Statistics and the Journal of the American Statistical Association .   


二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Applications Application sufficient dimension Reduction

已有 1 人评分论坛币 收起 理由
cheetahfly + 30 奖励积极上传好的资料

总评分: 论坛币 + 30   查看全部评分

沙发
ktv55(未真实交易用户) 学生认证  发表于 2018-6-20 00:02:16
不错不错。。

藤椅
hifinecon(未真实交易用户) 发表于 2018-6-20 06:54:58
thanks

板凳
cheetahfly(未真实交易用户) 在职认证  发表于 2018-6-20 08:13:53
看作者名字应该是中国人写的,加上很新,非常难得。

报纸
hyq2003(未真实交易用户) 发表于 2018-6-20 08:29:03
谢谢分享

地板
20115326(真实交易用户) 学生认证  发表于 2018-6-20 10:01:08
绝对的好书

7
fuganggang(真实交易用户) 在职认证  发表于 2018-6-20 10:14:42
谢谢楼主分享

8
shuxia(真实交易用户) 发表于 2018-6-20 11:13:37
非常感谢!

9
渡河采乔(真实交易用户) 发表于 2019-11-29 20:25:42
感动。。。写论文正好在找这本书,感恩的心

10
yangming98(真实交易用户) 发表于 2019-12-1 22:30:38 来自手机
chicu 发表于 2018-6-19 23:23
Sufficient Dimension Reduction: Methods and Applications with R
好的好的好的好的好的

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注cda
拉您进交流群
GMT+8, 2026-1-10 15:40