楼主: igs816
5956 31

[程序分享] Hands-On Natural Language Processing with Python [推广有奖]

已卖:261238份资源

泰斗

6%

还不是VIP/贵宾

-

威望
9
论坛币
1762969 个
通用积分
20526.9613
学术水平
2754 点
热心指数
3477 点
信用等级
2565 点
经验
485149 点
帖子
5457
精华
52
在线时间
3908 小时
注册时间
2007-8-6
最后登录
2025-12-28

高级学术勋章 特级学术勋章 高级信用勋章 特级信用勋章 高级热心勋章 特级热心勋章

楼主
igs816 在职认证  发表于 2018-8-4 23:05:31 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
SOaLj9UZe0XAkUkhWFks0JOh4Bl4F4Yy.png
English | Jul. 2018 | ISBN: 178913949X | 312 Pages | EPUB
Foster your NLP applications with the help of deep learning, NLTK, and TensorFlow

Natural language processing (NLP) has found its application in various domains, such as web search, advertisements, and customer services, and with the help of deep learning, we can enhance its performances in these areas. Hands-On Natural Language Processing with Python teaches you how to leverage deep learning models for performing various NLP tasks, along with best practices in dealing with today’s NLP challenges.

To begin with, you will understand the core concepts of NLP and deep learning, such as Convolutional Neural Networks (CNNs), recurrent neural networks (RNNs), semantic embedding, Word2vec, and more. You will learn how to perform each and every task of NLP using neural networks, in which you will train and deploy neural networks in your NLP applications. You will get accustomed to using RNNs and CNNs in various application areas, such as text classification and sequence labeling, which are essential in the application of sentiment analysis, customer service chatbots, and anomaly detection. You will be equipped with practical knowledge in order to implement deep learning in your linguistic applications using Python's popular deep learning library, TensorFlow.

By the end of this book, you will be well versed in building deep learning-backed NLP applications, along with overcoming NLP challenges with best practices developed by domain experts.

Table of Contents
1: GETTING STARTED
2: TEXT CLASSIFICATION AND POS TAGGING USING NLTK
3: DEEP LEARNING AND TENSORFLOW
4: SEMANTIC EMBEDDING USING SHALLOW MODELS
5: TEXT CLASSIFICATION USING LSTM
6: SEARCHING AND DEDUPLICATING USING CNNS
7: NAMED ENTITY RECOGNITION USING CHARACTER LSTM
8: TEXT GENERATION AND SUMMARIZATION USING GRUS
9: QUESTION-ANSWERING AND CHATBOTS USING MEMORY NETWORKS
10: MACHINE TRANSLATION USING THE ATTENTION-BASED MODEL
11: SPEECH RECOGNITION USING DEEPSPEECH
12: TEXT-TO-SPEECH USING TACOTRON
13: DEPLOYING TRAINED MODELS

What You Will Learn
Implement semantic embedding of words to classify and find entities
Convert words to vectors by training in order to perform arithmetic operations
Train a deep learning model to detect classification of tweets and news
Implement a question-answer model with search and RNN models
Train models for various text classification datasets using CNN
Implement WaveNet a deep generative model for producing a natural-sounding voice
Convert voice-to-text and text-to-voice
Train a model to convert speech-to-text using DeepSpeech

本帖隐藏的内容

Hands-On Natural Language Processing with Python.epub (18.33 MB, 需要: 10 个论坛币)



二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:word

已有 1 人评分经验 学术水平 热心指数 信用等级 收起 理由
Nicolle + 100 + 1 + 1 + 1 精彩帖子

总评分: 经验 + 100  学术水平 + 1  热心指数 + 1  信用等级 + 1   查看全部评分

本帖被以下文库推荐

沙发
phipe(真实交易用户) 发表于 2018-8-5 00:37:10
谢谢分享

藤椅
Nicolle(真实交易用户) 学生认证  发表于 2018-8-5 03:16:09
提示: 作者被禁止或删除 内容自动屏蔽

板凳
edmcheng(未真实交易用户) 发表于 2018-8-5 06:16:57
Thanks

报纸
anneanne88(真实交易用户) 发表于 2018-8-5 07:08:38
Thanks for shareing

地板
heiyaodai(真实交易用户) 发表于 2018-8-5 08:18:35
谢谢分享

7
bruce77(未真实交易用户) 发表于 2018-8-5 08:31:28

谢谢分享

8
michaelshyong(真实交易用户) 发表于 2018-8-5 08:40:26
thanks for sharing

9
jinyizhe282(真实交易用户) 发表于 2018-8-5 08:52:26
哈哈哈哈  

10
hifinecon(未真实交易用户) 发表于 2018-8-5 09:21:41
Thank you very much for this wonderful sharing!!

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注cda
拉您进交流群
GMT+8, 2025-12-29 03:06