楼主: hifinecon
2353 9

[书籍介绍] Machine Learning with PySpark [推广有奖]

  • 8关注
  • 45粉丝

已卖:951份资源

大师

1%

还不是VIP/贵宾

-

威望
1
论坛币
50265 个
通用积分
644.3571
学术水平
418 点
热心指数
488 点
信用等级
413 点
经验
112656 点
帖子
14905
精华
0
在线时间
2929 小时
注册时间
2010-10-29
最后登录
2026-1-20

楼主
hifinecon 发表于 2018-12-20 19:24:20 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币

Machine Learning

with PySpark

With Natural Language

Processing and Recommender

Systems

Pramod Singh

Apress 2019

Introduction

Build machine learning models, natural language processing applications, and recommender systems with PySpark to solve various business challenges. This book starts with the fundamentals of Spark and its evolution and then covers the entire spectrum of traditional machine learning algorithms along with natural language processing and recommender systems using PySpark.

Machine Learning with PySpark  shows you how to build supervised machine learning models such as linear regression, logistic regression, decision trees, and random forest. You'll also see unsupervised machine learning models such as K-means and hierarchical clustering. A major portion of the book focuses on feature engineering to create useful features with PySpark to train the machine learning models. The natural language processing section covers text processing, text mining, and embedding for classification.

After reading this book, you will understand how to use PySpark's machine learning library to build and train various machine learning models. Additionally you'll become comfortable with related PySpark components, such as data ingestion, data processing, and data analysis, that you can use to develop data-driven intelligent applications.

You will:

·         Build a spectrum of supervised and unsupervised machine learning algorithms

·         Implement machine learning algorithms with Spark MLlib libraries

·         Develop a recommender system with Spark MLlib libraries

·         Handle issues related to feature engineering, class balance, bias and variance, and cross validation for building an optimal fit model

Table of contents

Evolution of Data

Introduction to Machine Learning

Data Processing

Linear Regression

Logistic Regression

Random Forests

Recommender Systems

Clustering

Natural Language Processing ML with PySpark.pdf (7.05 MB, 需要: 15 个论坛币)



二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Learning machine earning Spark Learn

已有 1 人评分经验 收起 理由
残阳_等待 + 100 精彩帖子

总评分: 经验 + 100   查看全部评分

本帖被以下文库推荐

沙发
齐物论pi(未真实交易用户) 学生认证  发表于 2018-12-21 11:30:49 来自手机
不错,spark和python相结合

藤椅
hifinecon(未真实交易用户) 发表于 2018-12-21 11:40:31
齐物论pi 发表于 2018-12-21 11:30
不错,spark和python相结合
thanks for your valuable comment!

板凳
heiyaodai(真实交易用户) 发表于 2018-12-21 20:46:00
谢谢分享!

报纸
hifinecon(未真实交易用户) 发表于 2018-12-21 23:55:15
heiyaodai 发表于 2018-12-21 20:46
谢谢分享!

地板
kantdisciple(未真实交易用户) 发表于 2019-1-1 11:49:02
谢谢分享!

7
hifinecon(未真实交易用户) 发表于 2019-1-1 15:59:26
kantdisciple 发表于 2019-1-1 11:49
谢谢分享!

8
hifinecon(未真实交易用户) 发表于 2019-1-1 15:59:50
kantdisciple 发表于 2019-1-1 11:49
谢谢分享!

9
peyzf(未真实交易用户) 发表于 2019-4-11 22:07:52
学习一下

10
update00230023(未真实交易用户) 发表于 2019-9-5 23:11:20 来自手机
hifinecon 发表于 2018-12-20 19:24
Machine Learningwith PySparkWith Natural LanguageProcessing and RecommenderSystemsPramod SinghApress ...
如何下载?

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注cda
拉您进交流群
GMT+8, 2026-1-24 11:42