|
# Data Processing Of Gene
# Import the dataset
library(data.table)
dataCSV = fread("Data.csv")
dataRow = fread("GSE115469_Data.csv",header = FALSE)
dataP1 = dataRow[,1:1069]
# Transpose
dataTrans = t(dataP1)
# Set the rowNames and colNames
rownames(dataTrans) = dataTrans[,1]
colnames(dataTrans) = dataTrans[1,]
dataTrans = dataTrans[-1,-1]
# character --> Numberic
dataNum=apply(dataTrans,2,as.numeric)
# Normalization
dataNum[dataNum > 1] = 1
dataNum[dataNum < 1] = 0
# Removing all rows which all columns have value
dataValue = dataNum[which(rowSums(dataNum==0)!=0),]
# Removing all rows which all columns are 0
dataZero = dataValue[which(rowSums(dataValue)>0),]
dataZero =na.omit(dataZero)
# Apriori
library(Matrix)
library(arules)
# data --> Transaction
trans = as(dataZero,"transactions")
# Using Apriori to find frequent itemsets
#dataset = read.transactions(dataTrans)
#itemFrequencyPlot(dataset, topN = 100)
rules = apriori(data = trans, parameter = list(support = 0.8, confidence = 0.8))
|