英文文献:The Zero Lower Bound: Frequency, Duration, and Numerical Convergence-零下限:频率、持续时间和数值收敛性
英文文献作者:Alexander W. Richter,Nathaniel A. Throckmorton
英文文献摘要:
When monetary policy faces a zero lower bound (ZLB) constraint on the nominal interest rate, a minimum state variable (MSV) solution may not exist even if the Taylor principle holds when the ZLB does not bind. This paper shows there is a clear tradeoff between the expected frequency and average duration of ZLB events along the boundary of the convergence region---the region of the parameter space where our policy function iteration algorithm converges to an MSV solution. We show this tradeoff with two alternative stochastic processes: one where monetary policy follows a 2-state Markov chain, which exogenously governs whether the ZLB binds, and the other where ZLB events are endogenous due to discount factor or technology shocks. We also show that small changes in the parameters of the stochastic processes cause meaningful differences in the decision rules and where the ZLB binds in the state space.
当货币政策面临名义利率的零下限约束时,即使泰勒原理成立,当ZLB不受约束时,也可能不存在最小状态变量(MSV)解。本文表明,在收敛区域(参数空间的区域,我们的策略函数迭代算法收敛到MSV解的区域)的边界上,ZLB事件的期望频率和平均持续时间之间有一个明显的折衷。我们用两个可选的随机过程来说明这种权衡:一个是货币政策遵循二态马尔可夫链,它从外部决定ZLB是否绑定;另一个是ZLB事件由于折现因素或技术冲击而是内生的。我们还表明,随机过程参数的微小变化会在决策规则和ZLB在状态空间中的绑定处造成有意义的差异。


雷达卡


京公网安备 11010802022788号







