楼主: zns606
2632 3

Online learning with kernels [推广有奖]

  • 0关注
  • 0粉丝

已卖:172份资源

本科生

36%

还不是VIP/贵宾

-

威望
0
论坛币
59 个
通用积分
0.1800
学术水平
0 点
热心指数
5 点
信用等级
0 点
经验
1618 点
帖子
64
精华
0
在线时间
39 小时
注册时间
2009-10-23
最后登录
2024-5-22

楼主
zns606 发表于 2010-2-23 14:11:15 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
Kernel based algorithms such as support vector machines have achieved considerable success in various problems in the batch setting where all of the training data is available in advance. Support vector machines combine the so-called kernel trick with the large margin idea. There has been little use of these methods in an online setting suitable for real-time applications. In this paper we consider online learning in a Reproducing Kernel Hilbert Space. By considering classical stochastic gradient descent within a feature space, and the use of some straightforward tricks, we develop simple and computationally efficient algorithms for a wide range of problems such as classification, regression, and novelty detection. In addition to allowing the exploitation of the kernel trick in an online setting, we examine the value of large margins for classification in the online setting with a drifting target. We derive worst case loss bounds and moreover we show the convergence of the hypothesis to the minimiser of the regularised risk functional. We present some experimental results that support the theory as well as illustrating the power of the new algorithms for online novelty detection. In addition
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Learning Kernels earning kernel ONLINE Learning ONLINE Kernels

Online learning with kernels.pdf
下载链接: https://bbs.pinggu.org/a-555810.html

259.45 KB

需要: 1 个论坛币  [购买]

沙发
doog9527(真实交易用户) 发表于 2010-3-5 22:47:27
下了之后才发现就是个paper而已
不过任然感谢楼主的慷慨和知识共享
上善若水

藤椅
zzzppp(未真实交易用户) 发表于 2010-4-4 18:21:26
thanks a lot!

板凳
m8843620(真实交易用户) 发表于 2012-1-13 00:23:07
謝謝樓主的分享

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注cda
拉您进交流群
GMT+8, 2025-12-25 21:07